Part Number Hot Search : 
07024 SM8052 2N2804 GS2970A VRE3021 PE4508 2SK34 S151M165
Product Description
Full Text Search
 

To Download FZ06BIA045FH01 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  FZ06BIA045FH01 preliminary datasheet flowsol 0 bi 600v/35a high efficiency ultra fast switching frequency low inductive design sic in boost transformerless solar inverters FZ06BIA045FH01 tj=25c, unless otherwise specified parameter symbol value unit repetitive peak reverse voltage v rrm 600 v t h =80c 36 t c =80c 49 t h =80c 42 t c =80c 63 maximum junction temperature t j max 150 c input boost mosfet v ds 600 v t h =80c 30 t c =80c 37 t h =80c 92 t c =80c 139 t j max 150 c 360 t j =25c t j =t j max features flow0 housing target applications schematic t p =10ms 370 a types i2t-value maximum ratings i fav a 2 s i fsm condition dc current power dissipation p tot v gs i dpulse gate-source peak voltage drain to source breakdown voltage dc drain current t j =t j max 20 t j =t j max t p limited by t j max w v a w a a bypass fwd pulsed drain current forward current per fwd surge forward current p tot power dissipation per fwd i 2 t maximum junction temperature i d 230 1 r evision: 4
FZ06BIA045FH01 preliminary datasheet tj=25c, unless otherwise specified parameter symbol value unit maximum ratings condition input boost fwd t h =80c 20 t c =80c 24 t h =80c 41 t c =80c 62 buck fwd t h =80c 22 t c =80c 29 t h =80c 34 t c =80c 52 buck mosfet t h =80c 30 t c =80c 37 t h =80c 94 t c =80c 142 boost igbt t h =80c 40 t c =80c 40 t h =80c 86 t c =80c 131 t sc t j 150c 6 s v cc v ge =15v 360 v t j =t j max t j =25c t j =t j max t j =25c 175 v a v c w a collector-emitter break down voltage t p limited by t j max repetitive peak collector current gate-emitter peak voltage maximum junction temperature short circuit ratings dc collector current power dissipation per igbt 150 maximum junction temperature c t p limited by t j max w 600 t j =t j max a t j =t j max a 600 a v v c v v ge t j =t j max t j max p tot v ce i cpuls t j =t j max i c pulsed drain current i dpulse p tot gate-source peak voltage vgs maximum junction temperature power dissipation t j max i frm t j max repetitive peak forward current drain to source breakdown voltage v ds dc drain current i d w i f repetitive peak forward current v rrm t j max p tot power dissipation peak repetitive reverse voltage dc forward current i frm maximum junction temperature v rrm peak repetitive reverse voltage t p limited by t j max w power dissipation per fwd p tot dc forward current a t j =t j max t p limited by t j max a i f t c =100c 15 v a c t j =t j max tc=25c 230 600 150 20 150 20 70 600 175 2 r evision: 4
FZ06BIA045FH01 preliminary datasheet tj=25c, unless otherwise specified parameter symbol value unit maximum ratings condition thermal properties insulation properties v is t=2s dc voltage 4000 v min 12,7 mm min 12,7 mm -40?+(tjmax - 25) c storage temperature t stg -40?+125 c clearance insulation voltage creepage distance t op operation temperature under switching condition 3 r evision: 4
FZ06BIA045FH01 preliminary datasheet parameter symbol unit v ge [v] or v gs [v] v r [v] or v ce [v] or v ds [v] i c [a] or i f [a] or i d [a] t j min typ max t j =25c 0,7 1,01 1,3 t j =125c 0,93 t j =25c 0,86 t j =125c 0,75 t j =25c 0,1 t j =125c 0,1 t j =25c 0,05 t j =125c thermal resistance chip to heatsink per chip r thjh thermal grease thickness 50um  = 1 w/mk 1,68 k/w t j =25c 0,04 t j =125c 0,09 t j =25c 2,1 3 3,9 t j =125c t j =25c 200 t j =125c t j =25c 25000 t j =125c t j =25c 28 t j =125c 27 t j =25c 5 t j =125c 6 t j =25c 154 t j =125c 167 t j =25c 10 t j =125c 9 t j =25c 0,063 t j =125c 0,072 t j =25c 0,025 t j =125c 0,025 t j =25c 150 190 t j =125c t j =25c t j =125c t j =25c t j =125c tj=25c 1 1,54 1,8 t j =150c 1,71 t j =25c 400 t j =150c t j =25c 16,63 t j =150c 14,68 t j =25c 9,3 t j =150c 10,4 t j =25c 0,058 t j =150c 0,064 t j =25c 0,005 t j =150c 0,006 di ( rec ) max t j =25c 4244 /d t t j =150c 2752 thermal resistance chip to heatsink per chip r thjh thermal grease thickness 50um  = 1 w/mk 2,34 k/w 15 8 rgon=4  10 400 400 20 10 0 f=1mhz rgon=4  10 r ds(on) t f fall time turn-off energy loss per pulse input capacitance e on q gs q gd i rrm i rm q rr t rr v f e rec turn off delay time forward voltage input boost mosfet reverse transfer capacitance gate to source charge turn-on energy loss per pulse output capacitance gate to drain charge total gate charge gate threshold voltage gate to source leakage current rgoff=4  vgs=vds 0 t r t d(on) i dss i r value conditions c iss r thjh c oss c rss thermal resistance chip to heatsink per chip 0,76 thermal grease thickness 50um  = 1 w/mk characteristic values forward voltage threshold voltage (for power loss calc. only) slope resistance (for power loss calc. only) s olar invert e v to r t bypass fwd 15 v v  ma reverse current 44 100 44 400 10 48 0 15 tj=25c 34 na static drain to source on resistance 400 600 zero gate voltage drain current t d(off) turn on delay time rise time rgon=4  q g e off reverse recovery time peak rate of fall of recovery current input boost fwd reverse recovered energy reverse leakage current peak recovery current reverse recovery charge 10 15 1200 320 6800 51  nc a ns v mws c a mws a/ s ns pf i gss na v 0,003 v (gs)th k/w 4 r evision: 4
FZ06BIA045FH01 preliminary datasheet parameter symbol unit v ge [v] or v gs [v] v r [v] or v ce [v] or v ds [v] i c [a] or i f [a] or i d [a] t j min typ max value conditions characteristic values t j =25c 1,5 2,04 2,7 t j =125c 1,50 t j =25c 42 t j =125c 58 t j =25c 12,2 t j =125c 19,4 t j =25c 0,26 t j =125c 0,65 di ( rec ) max t j =25c 14190 /d t t j =125c 13169 t j =25c 0,036 t j =125c 0,108 thermal resistance chip to heatsink per chip r thjh thermal grease thickness 50um  = 1 w/mk 2,04 k/w t j =25c 45 t j =125c 90 t j =25c 2,1 3 3,9 t j =125c t j =25c 200 t j =125c t j =25c 25000 t j =125c t j =25c 31 t j =125c 30 t j =25c 5,6 t j =125c 6,2 t j =25c 158 t j =125c 170 t j =25c 45,4 t j =125c 11,5 t j =25c 0,132 t j =125c 0,229 t j =25c 0,026 t j =125c 0,026 600 0,003 0 v ds =v gs 15 15 44 44 400 400 20 100 400 f=1mhz 0 10 10 10 10 0 rgon=4  thermal grease thickness 50um  = 1 w/mk q g q rr t rr t d(on) r ds(on) rgoff=4  c rss v (gs)th i gss t r t d(off) e on q gd v f erec r thjh peak reverse recovery current zero gate voltage drain current i dss static drain to source on resistance i rrm reverse recovered charge gate threshold voltage e off c iss c oss q gs buck mosfet reverse recovery time reverse recovered energy peak rate of fall of recovery current fwd forward voltage v c mws a/ s m  0,75 pf ns 48 mws 6800 rgon=4  turn off delay time rise time gate to drain charge gate to source charge turn-off energy loss per pulse fall time 15 buck fwd input capacitance gate to source leakage current turn on delay time t f output capacitance turn-on energy loss per pulse total gate charge reverse transfer capacitance thermal resistance chip to heatsink per chip na nc na ns a v tj=25c 150 51 320 34 tj=25c 190 k/w 5 r evision: 4
FZ06BIA045FH01 preliminary datasheet parameter symbol unit v ge [v] or v gs [v] v r [v] or v ce [v] or v ds [v] i c [a] or i f [a] or i d [a] t j min typ max value conditions characteristic values t j =25c 5 5,8 6,5 t j =150c t j =25c 1,18 t j =150c 1,21 t j =25c 0,02 t j =150c t j =25c 650 t j =150c thermal resistance chip to heatsink per chip r thjh thermal grease thickness 50um  = 1 w/mk 1,10 k/w note: for the boost igbt only lf switching allowed r 25 tj=25c 17,5 22 29,0 k  r 100 tol. 5% 1486  * see details on thermistor charts on figure 2. pf 4000 93 tj=25c gate emitter threshold voltage q gate boost igbt gate-emitter leakage current collector-emitter saturation voltage collector-emitter cut-off incl fwd integrated gate resistor reverse transfer capacitance 0 gate charge input capacitance output capacitance 480 tj=25c i ces v ge(th) v ce(sat) c ies k 0  15 nc 50 mw 210 b-value b (25/100) tol. 3% power dissipation p rated resistance* thermistor 600 r gint v ce =v ge f=1mhz c oss c rss i ges 15 0 ma na v v 20 50 0,0008 25 tj=25c tj=25c 200 3140 310 none 6 r evision: 4
FZ06BIA045FH01 preliminary datasheet figure 1 mosfet figure 2 mosfet typical output characteristics i c = f(v ce ) i c = f(v ce ) at at t p = 250 s t p = 250 s t j = 25 c t j = 125 c v ge from 4 v to 14 v in steps of 1 v v ge from 4 v to 14 v in steps of 1 v figure 3 mosfet figure 4 fred typical transfer characteristics typical diode forward current as i c = f(v ge ) a function of forward voltage i f = f(v f ) at at t p = 250 s t p = 250 s v ce = 10 v buck typical output characteristics 0 20 40 60 80 100 012345 v ce (v) i c (a) 0 10 20 30 40 50 0123456 v ge (v) i c (a) t j = 25c t j = t jmax -25c 0 5 10 15 20 25 30 0 0,8 1,6 2,4 3,2 4 v f (v) i f (a) t j = 25c t j = t jmax -25c 0 20 40 60 80 100 012345 v ce (v) i c (a) 7 rev ision: 4
FZ06BIA045FH01 preliminary datasheet figure 5 mosfet figure 6 mosfet typical switching energy losses typical switching energy losses as a function of collector current as a function of gate resistor e = f(i c ) e = f(r g ) with an inductive load at with an inductive load at t j = 25/125 c t j = 25/125 c v ce = 400 v v ce = 400 v v ge = 10 v v ge = 10 v r gon = 4 ? i c = 15 a r goff = 4 ? figure 7 fred figure 8 fred typical reverse recovery energy loss typical reverse recovery energy loss as a function of collector current as a function of gate resistor e rec = f(i c )e rec = f(r g ) with an inductive load at with an inductive load at t j = 25/125 c t j = 25/125 c v ce = 400 v v ce = 400 v v ge = 10 v v ge = 10 v r gon = 4 ? i c = 15 a buck e on high t e off high t e on low t e off low t 0,00 0,05 0,10 0,15 0,20 0,25 0,30 0,35 0,40 0 5 10 15 20 25 30 i c (a) e (mws) e off high t e on high t e on low t e off low t 0,00 0,05 0,10 0,15 0,20 0,25 0,30 0,35 0 4 8 12 16 20 r g (w) e (mws) e rec high t e rec low t 0,000 0,050 0,100 0,150 0,200 0,250 0 5 10 15 20 25 30 i c (a) e (mws) e rec high t e rec low t 0,000 0,020 0,040 0,060 0,080 0,100 0,120 0,140 0 4 8 12 16 20 r g (w) e (mws) 8 rev ision: 4
FZ06BIA045FH01 preliminary datasheet figure 9 mosfet figure 10 mosfet typical switching times as a typical switching times as a function of collector current function of gate resistor t = f(i c ) t = f(r g ) with an inductive load at with an inductive load at t j = 125 c t j = 125 c v ce = 400 v v ce = 400 v v ge = 10 v v ge = 10 v r gon = 4 ? i c = 15 a r goff = 4 ? figure 11 fred figure 12 fred typical reverse recovery time as a typical reverse recovery time as a function of collector current function of igbt turn on gate resistor t rr = f(ic) t rr = f(r gon ) at at t j = 25/125 c t j = 25/125 c v ce = 400 v v r = 400 v v ge = 10 v i f = 15 a r gon = 4 ? v ge = 10 v buck t doff t f t don t r 0,00 0,01 0,10 1,00 0 5 10 15 20 25 30 i c (a) t (ms) t rr high t t rr low t 0,000 0,005 0,010 0,015 0,020 0,025 0,030 0,035 0,040 0 4 8 12 16 20 r gon (w) t rr (ms) t doff t f t don t r 0,00 0,01 0,10 1,00 048121620 r g (w) t (ms) t rr high t t rr low t 0,000 0,005 0,010 0,015 0,020 0,025 0 5 10 15 20 25 30 i c (a) t rr (ms) 9 rev ision: 4
FZ06BIA045FH01 preliminary datasheet figure 13 fred figure 14 fred typical reverse recovery charge as a typical reverse recovery charge as a function of collector current function of igbt turn on gate resistor q rr = f(i c )q rr = f(r gon ) at at at t j = 25/125 c t j = 25/125 c v ce = 400 v v r = 400 v v ge = 10 v i f = 15 a r gon = 4 ? v ge = 10 v figure 15 fred figure 16 fred typical reverse recovery current as a typical reverse recovery current as a function of collector current function of igbt turn on gate resistor i rrm = f(i c )i rrm = f(r gon ) at at t j = 25/125 c t j = 25/125 c v ce = 400 v v r = 400 v v ge = 10 v i f = 15 a r gon = 4 ? v ge = 10 v buck i rrm high t i rrm low t 0 10 20 30 40 50 60 70 80 90 0 4 8 12 16 20 r gon (w) i rrm (a) q rr high t q rr low t 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 048121620 r gon ( ) q rr (mc) i rrm high t i rrm low t 0 10 20 30 40 50 60 70 80 0 5 10 15 20 25 30 i c (a) i rrm (a) q rr high t q rr low t 0,00 0,20 0,40 0,60 0,80 1,00 1,20 0 5 10 15 20 25 30 i c (a) q rr (mc) 1 0 revision: 4
FZ06BIA045FH01 preliminary datasheet figure 17 fred figure 18 fred typical rate of fall of forward typical rate of fall of forward and reverse recovery current as a and reverse recovery current as a function of collector current function of igbt turn on gate resistor di 0 /dt,di rec /dt = f(ic) di 0 /dt,di rec /dt = f(r gon ) at at t j = 25/125 c t j = 25/125 c v ce = 400 v v r = 400 v v ge = 10 v i f = 15 a r gon = 4 ? v ge = 10 v figure 19 mosfet figure 20 fred igbt transient thermal impedance f red transient thermal impedance as a function of pulse width as a function of pulse width z thjh = f(t p )z thjh = f(t p ) at at d = t p / t d = t p / t r thjh = 0,75 k/w r thjh = 2,04 k/w igbt thermal model values fred thermal model values r (c/w) tau (s) r (c/w) tau (s) 0,03 9,3e+00 0,06 5,6e+00 0,12 1,2e+00 0,25 5,0e-01 0,41 1,6e-01 0,90 7,8e-02 0,11 3,8e-02 0,53 1,5e-02 0,03 5,2e-03 0,23 1,8e-03 0,04 3,7e-04 0,07 3,3e-04 buck t p (s) z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 1 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 t p (s) z thjh (k/w) d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 di 0 /dt high t di rec /dt high t di 0 /dt low t di rec /dt low t 0 5000 10000 15000 20000 25000 048121620 r gon (w) di rec / dt (a/ms) di 0 /dt high t di rec /dt high t di rec /dt low t di o /dt low t 0 5000 10000 15000 20000 25000 0 5 10 15 20 25 30 i c (a) di rec / dt (a/ms) di 0 /dt di rec /dt di 0 /dt di rec /dt 1 1 revision: 4
FZ06BIA045FH01 preliminary datasheet figure 21 mosfet figure 22 mosfet power dissipation as a collector current as a function of heatsink temperature function of heatsink temperature p tot = f(t h )i c = f(t h ) at at t j = 150 c t j = 150 c v ge = 15 v figure 23 fred figure 24 fred power dissipation as a forward current as a function of heatsink temperature function of heatsink temperature p tot = f(t h )i f = f(t h ) at at t j = 150 c t j = 150 c buck 0 40 80 120 160 200 240 0 50 100 150 200 t h ( o c) p tot (w) 0 10 20 30 40 50 0 50 100 150 200 t h ( o c) i c (a) 0 10 20 30 40 50 60 70 80 0 50 100 150 200 t h ( o c) p tot (w) 0 5 10 15 20 25 30 35 40 0 50 100 150 200 t h ( o c) i f (a) 1 2 revision: 4
FZ06BIA045FH01 preliminary datasheet figure 25 mosfet figure 26 mosfet safe operating area as a function gate voltage vs gate charge of collector-emitter voltage i c = f(v ce )v ge = f(q g ) at at d = single pulse i c = 15 a th = 80 oc v ge = 15 v t j =t jmax oc buck v ce (v) i c (a) 10 3 10 0 10 -1 10 1 10 2 10 1 10 2 10us 100us 1ms 10ms 100ms dc 10 0 10 3 0 2 4 6 8 10 0 20 40 60 80 100 120 140 160 q g (nc) v ge (v) 120 v 480 v 1 3 revision: 4
FZ06BIA045FH01 preliminary datasheet figure 1 igbt figure 2 igbt typical output characteristics typical output characteristics i c = f(v ce ) i c = f(v ce ) at at t p = 250 s t p = 250 s t j = 25 c t j = 125 c v ge from 7 v to 17 v in steps of 1 v v ge from 7 v to 17 v in steps of 1 v figure 3 igbt figure 4 igbt typical transfer characteristics igbt transient thermal impedance i c = f(v ge ) as a function of pulse width z thjh = f(t p ) at t p = 250 s at v ce = 10 v d = tp / t r thjh = 1,10 k/w boost 0 10 20 30 40 50 60 70 0,0 1,0 2,0 3,0 4,0 5,0 v ce (v) i c (a) 0 10 20 30 40 50 024681012 v ge (v) i c (a) t j = 25c t j = t jmax -25c 0 10 20 30 40 50 60 70 0,0 1,0 2,0 3,0 4,0 5,0 v ce (v) i c (a) t p (s) z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 1 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 1 4 revision: 4
FZ06BIA045FH01 preliminary datasheet figure 5 igbt figure 6 igbt power dissipation as a collector current as a function of heatsink temperature function of heatsink temperature p tot = f(t h )i c = f(t h ) at at t j = 175 oc t j = 175 oc v ge = 15 v boost 0 20 40 60 80 100 120 140 160 0 50 100 150 200 t h ( o c) p tot (w) 0 10 20 30 40 50 0 50 100 150 200 t h ( o c) i c (a) 1 5 revision: 4
FZ06BIA045FH01 preliminary datasheet figure 1 boost mosfet figure 2 boost fred typical output characteristics typical output characteristics i d = f(v ds ) i d = f(v ds ) at at t p = 250 s t p = 250 s t j = 25 c t j = 126 c v gs from 4 v to 14 v in steps of 1 v v gs from 4 v to 14 v in steps of 1 v figure 3 boost mosfet figure 4 boost fred typical transfer characteristics typical diode forward current as i d = f(v ds ) a function of forward voltage i f = f(v f ) at at t p = 250 s t p = 250 s v ds = 10 v input boost 0 10 20 30 40 50 0 0,8 1,6 2,4 3,2 4 v f (v) i f (a) t j = 25c t j = t jmax -25c 0 10 20 30 40 50 0123456 v gs (v) i d (a) t j = 25c t j = t jmax -25c 0 20 40 60 80 100 012345 v ce (v) i c (a) 0 20 40 60 80 100 012345 v ce (v) i c (a) 1 6 revision: 4
FZ06BIA045FH01 preliminary datasheet figure 5 boost mosfet figure 6 boost mosfet typical switching energy losses typical switching energy losses as a function of collector current as a function of gate resistor e = f(i d ) e = f(r g ) with an inductive load at with an inductive load at t j = 25/125 c t j = 25/125 c v ds = 400 v v ds = 400 v v gs = 10 v v gs = 10 v r gon = 4 ? i d = 15 a r goff = 4 ? figure 7 boost mosfet figure 8 boost mosfet typical reverse recovery energy loss typical reverse recovery energy loss as a function of collector (drain) current as a function of gate resistor e rec = f(i c )e rec = f(r g ) with an inductive load at with an inductive load at t j = 25/125 c t j = 25/125 c v ds = 400 v v ds = 400 v v gs = 10 v v gs = 10 v r gon = 4 ? i d = 15 a r goff = 4 ? input boost e rec high t e rec low t 0 0,005 0,01 0,015 0,02 0,025 0 5 10 15 20 25 30 i c (a) e (mws) e rec high t e rec low t 0 0,003 0,006 0,009 0,012 0,015 0,018 0 4 8 12 16 20 r g ( ) e (mws) e off high t e on high t e on low t e off low t 0 0,04 0,08 0,12 0,16 0,2 0 5 10 15 20 25 30 i c (a) e (mws) e off high t e on high t e on low t e off low t 0 0,04 0,08 0,12 0,16 0,2 0481 21 62 0 r g ( ) e (mws) 1 7 revision: 4
FZ06BIA045FH01 preliminary datasheet figure 9 boost mosfet figure 10 boost mosfet typical switching times as a typical switching times as a function of collector current function of gate resistor t = f(i d ) t = f(r g ) with an inductive load at with an inductive load at t j = 125 c t j = 125 c v ds = 400 v v ds = 400 v v gs = 10 v v gs = 10 v r gon = 4 ? i c = 15 a r goff = 4 ? figure 11 boost fred figure 12 boost fred typical reverse recovery time as a typical reverse recovery time as a function of collector current function of igbt turn on gate resistor t rr = f(ic) t rr = f(r gon ) at at t j = 25/125 c t j = 25/125 c v ce = 400 v v r = 400 v v ge = 10 v i f = 15 a r gon = 4 ? v gs = 10 v input boost t doff t f t don t r 0,001 0,01 0,1 1 0 5 10 15 20 25 30 i d (a) t ( s) t doff t f t don t r 0,001 0,01 0,1 1 0 4 8 12 16 20 r g ( ) t ( s) t rr high t t rr low t 0 0,005 0,01 0,015 0,02 0,025 0,03 0 4 8 12 16 20 r gon ( ) t rr ( s) t rr high t t rr low t 0 0,004 0,008 0,012 0,016 0,02 0 5 10 15 20 25 30 i c (a) t rr ( s) 1 8 revision: 4
FZ06BIA045FH01 preliminary datasheet figure 13 boost fred figure 14 boost fred typical reverse recovery charge as a typical reverse recovery charge as a function of collector current function of igbt turn on gate resistor q rr = f(i c )q rr = f(r gon ) at at at t j = 25/125 c tj = 25/125 c v ce = 400 v v r = 400 v v ge = 10 v i f =15 a r gon = 4 ? v gs =10 v figure 15 boost fred figure 16 boost fred typical reverse recovery current as a typical reverse recovery current as a function of collector current function of igbt turn on gate resistor i rrm = f(i c )i rrm = f(r gon ) at at t j = 25/125 c t j = 25/125 c v ce = 400 v v r = 400 v v ge = 10 v i f = 15 a r gon = 4 ? v gs = 10 v input boost i rrm high t i rrm low t 0 5 10 15 20 25 30 0 4 8 12 16 20 r gon ( ) irr m (a) q rr high t q rr low t 0,02 0,04 0,06 0,08 0,1 048121620 r gon ( ) q rr ( c) i rrm high t i rrm low t 0 5 10 15 20 25 0 5 10 15 20 25 30 i c (a) irr m (a) q rr high t q rr low t 0 0,02 0,04 0,06 0,08 0,1 0 5 10 15 20 25 30 i c (a) q rr ( c) 1 9 revision: 4
FZ06BIA045FH01 preliminary datasheet figure 17 boost fred figure 18 boost fred typical rate of fall of forward typical rate of fall of forward and reverse recovery current as a and reverse recovery current as a function of collector current function of igbt turn on gate resistor di 0 /dt,di rec /dt = f(ic) di 0 /dt,di rec /dt = f(r gon ) at at t j = 25/125 c tj = 25/125 c v ce = 400 v v r = 400 v v ge = 10 v i f =15 a r gon = 4 ? v gs =10 v figure 19 boost mosfet figure 20 boost fred igbt/mosfet transient thermal impeda nce fred transient thermal impedance as a function of pulse width as a function of pulse width z thjh = f(t p )z thjh = f(t p ) at at d = t p / t d = t p / t r thjh = 0,76 k/w r thjh = 2,34 k/w igbt thermal model values fred thermal model values r (c/w) tau (s) r (c/w) tau (s) 0,03247 9,971 0,1024 2,885 0,1223 1,22 0,495 0,3437 0,4264 0,1797 0,9886 0,07039 0,1173 0,04698 0,4865 0,01004 0,03103 0,005891 0,2673 0,001614 0,03298 0,0004038 input boost di 0 /dt low t di rec /dt low t di 0 /dt high t di rec /dt high t 0 2000 4000 6000 8000 10000 12000 0 4 8 12 16 20 r gon ( ) di rec / dt (a/ s) t p (s) z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 1 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 t p (s) z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 1 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 di 0 /dt high t di rec /dt high t di rec /dt low t di 0 /dt low t 0 1000 2000 3000 4000 5000 6000 0 5 10 15 20 25 30 i c (a) di rec / dt (a/ s) di 0 /dt di rec /dt di 0 /dt di rec /dt 2 0 revision: 4
FZ06BIA045FH01 preliminary datasheet figure 21 boost mosfet figure 22 boost mosfet power dissipation as a collector/drain current as a function of heatsink temperature function of heatsink temperature p tot = f(t h )i c = f(t h ) at at t j = 150 oc t j = 150 oc v gs = 10 v figure 23 boost fred figure 24 boost fred power dissipation as a forward current as a function of heatsink temperature function of heatsink temperature p tot = f(t h )i f = f(t h ) at at t j = 175 oc t j = 175 oc input boost 0 40 80 120 160 200 0 50 100 150 200 th ( o c) p tot (w) 0 10 20 30 40 50 0 50 100 150 200 th ( o c) i c (a) 0 20 40 60 80 0 50 100 150 200 t h ( o c) p tot (w) 0 5 10 15 20 25 30 0 50 100 150 200 t h ( o c) i f (a) 2 1 revision: 4
FZ06BIA045FH01 preliminary datasheet figure 25 boo st mosfet figure 26 boost mosfet safe operating area as a function gate voltage vs gate charge of drain-source voltage i d = f(v ds )v gs = f(qg) at at d = single pulse i d = 15 a t h = 80 oc v gs = 10 v t j =t jmax oc input boost v ds (v) i d (a) 10 3 10 0 10 -1 10 1 10 2 10 2 10us 100us 1ms 10ms 100ms dc 10 1 10 0 0 2 4 6 8 10 0 30 60 90 120 150 qg (nc) u gs (v) 120v 480v 22 revision: 4
FZ06BIA045FH01 preliminary datasheet figure 1 bypass diode figure 2 bypass diode typical diode forward current as diode transient thermal impedance a function of forward voltage as a function of pulse width i f = f(v f ) z thjh = f(t p ) at at t p = 250 sd = t p / t r thjh = 1,677 k/w figure 3 bypass diode figure 4 bypass diode power dissipation as a forward current as a function of heatsink temperature function of heatsink temperature p tot = f(t h )i f = f(t h ) at at t j = 150 oc t j = 150 oc bypass diode 0 10 20 30 40 50 0 0,3 0,6 0,9 1,2 1,5 v f (v) i f (a) t j = 25c t j = t jmax -25c t p (s) z thjc (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 1 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 0 20 40 60 80 100 0 50 100 150 200 t h ( o c) p tot (w) 0 10 20 30 40 50 60 70 0 50 100 150 200 t h ( o c) i f (a) 2 3 revision: 4
FZ06BIA045FH01 preliminary datasheet figure 1 thermistor figure 2 thermistor typical ntc characteristic typical ntc resistance values as a function of temperature r t = f(t) thermistor [] ?= ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?? 25 100 / 25 11 25 )( tt b ertr ntc-typical temperature characteristic 0 5000 10000 15000 20000 25000 25 50 75 100 125 t (c) r/ ? 2 4 revision: 4
FZ06BIA045FH01 preliminary datasheet t j 125 c r g on 4 ? r goff 4 ? figure 1 output inverter igbt figure 2 output inverter igbt turn-off switching waveforms & definition of t dof f , t eof f turn-on switching waveforms & definition of t don , t eon (t eof f = integrating time for e of f )( t eon = integrating time for e on ) v ge (0%) = 0v v ge (0%) = 0v v ge (100%) = 10 v v ge (100%) = 10 v v c (100%) = 400 v v c (100%) = 400 v i c (100%) = 15 a i c (100%) = 15 a t doff = 0,16 s t don = 0,03 s t eoff = 0,17 s t eon = 0,06 s figure 3 output inverter igbt figure 4 output inverter igbt turn-off switching waveforms & definition of t f turn-on switching waveforms & definition of t r v c (100%) = 400 v v c (100%) = 400 v i c (100%) = 15 a i c (100%) = 15 a t f = 0,01 s t r = 0,01 s switching definitions buck mosfet general conditions = = = i c 1% v ce 90% v ge 90% -20 0 20 40 60 80 100 120 140 -0,1 -0,05 0 0,05 0,1 0,15 0,2 0,25 0,3 time (us) % t do f f t eoff v ce i c v ge i c10% v ge10% t don v ce 3% -50 0 50 100 150 200 2,4 2,45 2,5 2,55 2,6 2,65 2,7 time(us) % i c v ce t eon v ge fitted i c10% i c 90% i c 60% i c 40% -20 0 20 40 60 80 100 120 140 0,14 0,145 0,15 0,155 0,16 0,165 0,17 time (us) % v ce i c t f i c10% i c90% -20 20 60 100 140 180 220 2,45 2,5 2,55 2,6 2,65 time(us) % tr v ce ic 2 5 revision: 4
FZ06BIA045FH01 preliminary datasheet figure 5 output inverter igbt figure 6 output inverter igbt turn-off switching waveforms & definition of t eof f turn-on switching waveforms & definition of t eon p off (100%) = 6,01 kw p on (100%) = 6,01 kw e off (100%) = 0,02 mj e on (100%) = 0,07 mj t eoff = 0,17 s t eon = 0,06 s figure 7 output inverter fred figure 8 output inverter igbt gate voltage vs gate charge (measured) turn-off switching waveforms & definition of t r r v geoff = 0v v d (100%) = 400 v v geon = 10 v i d (100%) = 15 a v c (100%) = 400 v i rrm (100%) = -6 a i c (100%) = 15 a t rr = 0,01 s q g = 112,54 nc switching definitions buck mosfet i c 1% v ge90% -50 -20 10 40 70 100 130 160 -0,1 -0,05 0 0,05 0,1 0,15 0,2 0,25 0,3 time (us) % p of f e off t eoff v ce3% v ge10% -20 20 60 100 140 180 2,475 2,5 2,525 2,55 2,575 2,6 time(us) % p on e on t eon -5 0 5 10 15 -20 0 20 40 60 80 100 120 qg (nc) v ge (v) i rrm 10% i rrm 90% i rrm 100% t rr -120 -80 -40 0 40 80 120 2,52 2,53 2,54 2,55 2,56 2,57 time(us) % i d v d fitted 2 6 revision: 4
FZ06BIA045FH01 preliminary datasheet figure 9 output inverter fred figure 10 output inverter fred turn-on switching waveforms & definition of t qr r turn-on switching waveforms & definition of t erec (t qrr = integrating time for q r r )( t erec = integrating time for e rec ) i d (100%) = 15 a p rec (100%) = 6,01 kw q rr (100%) = 0,03 c e rec (100%) = 0,01 mj t qrr = 0,02 s t erec = 0,02 s figure 11 buck stage switching measurement circuit measurement circuits switching definitions buck mosfet t qrr -100 -50 0 50 100 150 200 2,48 2,51 2,54 2,57 2,6 2,63 time(us) % i d q r r -50 0 50 100 150 200 2,5 2,51 2,52 2,53 2,54 2,55 2,56 2,57 2,58 2,59 2,6 time(us) % p rec e rec t erec 2 7 revision: 4
FZ06BIA045FH01 preliminary datasheet ordering code in datamatrix as in packaging barcode as without thermal paste 12mm housi ng 10-FZ06BIA045FH01-p 897e10 p897e10 p897e10 outline pinout ordering code & marking ordering code and marking - outline - pinout 28 r evision: 4
FZ06BIA045FH01 preliminary datasheet product status definitions formative or in design first production full production disclaimer life support policy as used herein: the information given in this datasheet describes the type of component and does not represent assured characteristics. for tes ted values please contact vincotech.vincotech reserves the right to make changes without further notice to any products herein to i mprove reliability, function or design. vincotech does not assume any liability arising out of the application or use of any product o r circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. vincotech products are not authorised for use as critical components in life support devices or systems without the express wri tten approval of vincotech. 1. life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. a critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. target product status datasheet status definition this datasheet contains the design specifications for product development. specific ations may change in any manner without notice. the dat a contained is exclusively intended for technica lly trai ned staff. preliminary this datasheet contains preliminary data, and supplementary data may be published at a later date. vincotech reserves the right to make changes at any time without notice in order to improve design. the data contained is exclusively intended for technically trained staff. final this datasheet contains final specifications. vincotech reserves the right to make changes at any time without notice in order to improve design. the data contained is exclusively intended for te chnically tr ained st aff. 29 r evision: 4


▲Up To Search▲   

 
Price & Availability of FZ06BIA045FH01

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X